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cell volume distribution. The procedure involves solving the Monge-Ampére equation: A

single, nonlinear, elliptic scalar equation with no free parameters, and with proved exis-

tence and uniqueness theorems. We show that, for sufficiently small grid displacement,
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02.70.—c this method also minimizes the mean grid-cell distortion, measured by the trace of the
o metric tensor. We solve the Monge-Ampére equation numerically with a Jacobian-Free
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1. Introduction

multigrid preconditioning techniques to be used effectively, delivering a scalable algorithm
under grid refinement. Several challenging test cases demonstrate that this method pro-
duces optimal grids in which the constraint is satisfied numerically to truncation error.
We also compare this method to the well known deformation method [G. Liao, D. Ander-
son, Appl. Anal. 44 (1992) 285]. We show that the new method achieves the desired equi-
distributed grid using comparable computational time, but with considerably better grid
quality than the deformation method.

© 2008 Elsevier Inc. All rights reserved.

Equidistribution has traditionally been a fundamental guiding principle in grid generation, as is evidenced by the ample

literature on the subject (see e.g. [1-4] and references therein). The problem is very simply posed: Generate a grid that equi-
distributes a given quantity along an arc (1D), a surface (2D), or a volume (3D). (Hereafter, we will refer to equidistribution
with respect to volumes for arbitrary dimensionality.) The concept is most attractive due to its conceptual simplicity. Fur-
thermore, in the context of error equidistribution, a rigorous connection exists between error equidistribution and minimi-
zation of total error [5,6].

In one dimension, equidistribution determines the grid uniquely [1,2,7,8]. This follows because, in 1D, only one unknown
exists per cell, and it can be determined uniquely by specifying the Jacobian of the transformation at each cell. However, in
two or more dimensions, equidistribution itself is not sufficient to determine the grid uniquely. There are many possible
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grids that satisfy a given equidistribution principle, and therefore a possibility arises to select an optimal grid in some rea-
sonable sense.

Historically, many approaches have been developed to determine good quality grids in two and higher dimensions. Var-
iational methods have received a great deal of attention, as they provide a solid mathematical foundation, leading to Euler—
Lagrange equations that govern the generation of the grid. There are several very good reviews on the subject [1,2,7,8]. Pio-
neering work by Winslow [9] used the “smoothness” integral (a measure of the trace of the metric tensor) to determine a set
of Laplace equations that govern the generation of the grid (equipotential method). This method was very successful in
allowing the modeler to generate grids for complicated boundaries. In a later development [10], Winslow proposed the var-
iable diffusion method, in order to have control of the properties of the grid within the domain. Brackbill and Saltzman [11]
used a cost function consisting of a combination of smoothness, orthogonality, and volume variation integrals to define a grid
generation equation that incorporates properties of each. In this formulation, a term related to equidistribution is introduced
by the volume variation integral. However, local equidistribution was not achieved due to competition among the different
cost functions. Dvinsky [12] pioneered the use of harmonic maps for grid generation, and they have since been explored by a
number of authors [4,13-15]. Harmonic maps can also be derived from variational principles, and they are very attractive
because, in 2D under certain conditions, the existence of a solution is guaranteed [16,17]. However, they have important
drawbacks, as we outline in the next paragraph. More recently, Huang [18] revisited the issue of variational equidistribution
by providing rigorous integral measures of isotropy (or smoothness) and uniformity (or equidistribution). Again, equidistri-
bution appears as a fundamental ingredient of the grid generation strategy.

Despite the attractiveness of these variational approaches - their mathematical soundness and the reasonable quality of the
resulting grids - they suffer from various drawbacks. In particular, some require user-provided parameters to decide the rel-
ative contributions of the globally averaged terms in the cost function, and, when these parameters are chosen poorly, this may
lead to mathematically ill-posed problems [19]. In addition, they result in as many Euler-Lagrange equations as dimensions
considered, and these are strongly coupled and very nonlinear. They are therefore difficult to solve numerically (although, in
the context of harmonic functionals, there has been recent progress employing state-of-the-art nonlinear algorithms [20]). The
major disadvantage of some of these approaches is the following: Because the global grid property integrals compete against
each other, the grid never truly satisfies any constraint, including equidistribution, to any predictable accuracy.

To resolve some of these issues, elliptic grid generation methods were first proposed by Thompson et al. [21], which
evolved from the earlier work by Winslow [9]. In these approaches, non-homogeneous terms are added to Winslow’s equi-
potential method. When properly specified, such terms allow good control of the properties of the grid. In [22], the source
terms are found from a least squares (variational) fit of the inverse Jacobian matrix of the transformation to a target matrix
with the desired properties. In Refs. [3,23], evidence that an elliptic approach can be made equivalent to an equidistribution
principle by a proper choice of the non-homogeneous terms is presented. The attractiveness of these methods is that the
equations remain essentially elliptic, and are therefore fairly tractable algorithmically. However, they still require as many
coupled, nonlinear elliptic equations as the dimensionality of the problem, there is no rigorous existence and uniqueness
theory, and for the most part they lack the mathematical soundness of variational principles.

Several authors have attempted to generalize the concept of grid equidistribution directly to multiple dimensions. One
approach is to consider equidistribution along one-dimensional arcs in the multi-dimensional domain [3,24,25]. This method
has the advantage that the task of multidimensional grid generation may be decomposed in a series of 1D equidistribution
steps along coordinate arcs [3,26,27]. However, it has been shown [3,24] that the concept of arc equidistribution can only be
satisfied locally in the domain, not globally, and that it generates fairly poor-quality grids (and may even fold the grid [24]).

The case for the need of cell-volume equidistribution to fix such smoothness problems has been made by various authors
[28,23]. As we have argued earlier, in dimensions greater than unity equidistribution does not guarantee a unique solution.
This implies that there is room for grid optimization. Recently, Kania [23] derived a set of non-homogeneous terms for
Thompson’s method that achieves volume equidistribution, and demonstrated that the generated grids are of good quality
(although no a posteriori measure is given of how accurate the equidistribution principle is satisfied by the generated grids).
Liao and Anderson [29] proposed an ODE-based equidistribution approach based on the work of Moser [30,31]. By suitably
defining a flow velocity and an accompanying set of ODEs, it was demonstrated that the approach leads to an equidistributed
grid. Then, based on ODE theory, they demonstrate that the solution obtained by the procedure exists and is unique, once the
flow is prescribed. However, there is great latitude in choosing the flow, and for a fixed flow there is no evidence that the
resulting grid is optimal in any sense.

In this paper, we propose a new approach for cell-volume equidistribution, based on Monge—Kantorovich optimization
[32,33]. This method is based on a constrained minimization approach. Instead of minimizing a quantity consisting of a grid
quality measure plus an equidistribution measure, this method involves minimizing a grid quality measure constrained lo-
cally by the equidistribution principle. This constraint is enforced by a local Lagrange multiplier. In this fashion, the method
chooses the optimal grid which is compatible with the equidistribution principle. The minimization procedure results in a
single, nonlinear, elliptic equation for the Lagrange multiplier with no tunable parameters, the Monge-Ampére equation [34].
This equation has been shown (see e.g. [35]) to have a unique solution in 2D and 3D. Our variational method achieves equi-
distribution up to truncation error. This is unlike existing elliptic or variational approaches which, besides requiring as many
equations as the dimensionality of the problem, in general do not enforce equidistribution locally. Furthermore, in this work,
we also establish a connection between the Monge-Kantorovich approach and the minimization of grid cell distortion
(smoothness), which is a very desirable property in grid generation (see e.g. [11,24]).
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Our approach combines the advantages of both variational and elliptic grid generation approaches. The variational char-
acter of our method is obvious, as it stems from a minimization procedure. The leading term of the resulting Euler-Lagrange
equation is a Laplace operator (Section 2.2), and the linearized full operator is elliptic in nature (Section 3.2). Therefore, the
method is suitable for modern, fast nonlinear solvers for elliptic equations. Specifically, we will demonstrate in this study the
effectiveness of multigrid-preconditioned Newton-Krylov methods.

We would like to point out that the Monge-Ampére equation has been discussed before in the context of grid generation
in Ref. [36], where its suitability for blow-up problems (with a developing point singularity) was shown. However, in that
reference, the Monge-Ampeére equation is parabolized to obtain an approximate solution (vs. the scalable, fully nonlinear
algorithm proposed here). Further, there was no discussion of grid optimality in any sense.

The remainder of this paper is organized as follows. In Section 2 we formulate the problem and introduce our equidistri-
bution approach based on Monge-Kantorovich optimization, and the resulting Monge-Ampére equation. In Section 3 we dis-
cuss certain properties of the Monge-Kantorovich approach, such as ellipticity and the connection with the minimization of
grid distortion (maximization of grid smoothness). The numerical implementation of the equidistribution PDE is briefly dis-
cussed in Section 4. In Section 5, the Monge-Kantorovich approach is tested with several challenging examples. A compar-
ison is also made with the deformation method [29] and with a method that minimizes grid-cell distortion. All the tests
demonstrate the effectiveness and robustness of the Monge-Kantorovich approach in achieving optimally equidistributed
grids. Conclusions are drawn in Section 6. The Appendix briefly reviews the deformation method [29].

2. Monge-Kantorovich optimization
2.1. Prescribing the Jacobian

The problem involves finding a one-to-one transformation in physical space according to a prescribed transformation
Jacobian (or density or monitor function), i.e. to generate an adaptive grid with prescribed volumes. In this study, we focus
on the 2D case. An example of the applicability of the method to 3D is presented in Ref. [37]. Let X ¢ R? be a bounded domain
with boundary 0X. We define a two-dimensional coordinate transformation in physical space between the coordinates of an
initial grid X = (x,y) and the ones of the final grid X' = (x,y’) as ¢ : X — X, i.e. X' = ¥(X). See Fig. 1. We will assume that the
boundary 0X maps to itself. The Jacobi matrix ¢ is defined as

X oy
f(ay, ay,>, (1)
w

or #; = 0xj/0x;. The Jacobian of the transformation y from X — X' is its determinant det[VxX'], which in 2D can also be written
as [x',y'], where [f, g] = (df /0x)(dg/dy) — (df /dy)(0g/dx) is the familiar Poisson bracket. Both the initial grid x and the final grid
X' are mapped from the unit square ¢ = (¢,17) € £ = [0,1] x [0, 1], the logical space. We assume the mapping ¢ : & — X, i.e.
X = ¢(&), is given and j(¢&) is its Jacobian. On the other hand, the mapping ¢’ : & — X giving X' = ¢'(¢) is unknown and j'(¢)

<

1
e

g

Fig. 1. Sketch of the mappings between the logical and physical spaces = and X.
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is its (prescribed) Jacobian. In what follows we will always use the lower case to refer to the Jacobian in terms of the logical
variables ¢ and the upper case to refer to the same Jacobian expressed in terms of the coordinates of the initial and final grids
X, X'. For instance, we have

JEm=JXEn,yEm) =J®.y) (2)

for the transformation ¢’ from ¢ — X'.

The sketch in Fig. 1 shows the physical and logical domains and the relative mapping transformations. We envision po-
sitive, nonuniform density (monitor) functions p(x) and p’(x’). With appropriate grids for x and X/, the corresponding density
Po(€) on £ will be constant (p, = 1) and be equidistributed by a uniform grid on Z. Thus,

p'(¥,y)dx'dy’ = p(x,y)dxdy = dcdn. 3)

We conclude p(x,y) = 1/J(x,y) and p'(x',y") = 1/J'(x',¥'). Accordingly, the density functions p and p’ must satisfy the density
normalization condition:

[ pteyydxdy = [ pixyrixdy = [ dean=1. 4)
X X g
The requirement that X maps to itself under the transformation y from x — X’ leads to:

/_]’dg*dn:/]dédn:V:»

/X{J(x’(xjgl) )( y)) }dxdy /{ x, Xy))q dxdy = 0, 5)

which simply states that the total volume of the phy51cal domain remains the same under the transformation . This con-
dition must be satisfied by any map x'(x) that maps X to itself. Note that whereas Eq. (4) is a condition on the densities p and
p', Eq. (5) is a condition on p, p’ and the map y, i.e. on X'(X).

The aim of this study is to find the one-to-one and onto transformation v : X — X giving X — X’ such that

*,y)
X.y)
Eq. (6) ensures that the final grid will be equidistributed according to the densities p and p’. Eq. (5) is a solvability condition
for finding this transformation . As we shall see (Section 4.3), enforcing Eq. (5) is crucial to improve the convergence rate of
the numerical algorithm.

It is clear that, so posed, the problem has an infinite number of solutions. In what follows, we propose an approach to seek
amap y : X — X' leading to a single grid which is optimal in a well-defined sense.

x.y]= for all (x,y) € X. (6)

2.2. Monge-Kantorovich optimization: Minimization of the L, norm of the grid displacement

We begin with formulating the coordinate transformation in terms of a displacement function p = (p,p,):

X =x+p(XY), (7)
Y =y+p,XY). (8)
In this paper, we will restrict ourselves to physical domains characterized by a four-sided quadrilateral, in which each side of
the unit square in logical space = is mapped to a corresponding straight side in the physical space X. (Extension to domains

with curved boundaries has been carried out in Ref. [37].) On the boundary segments, we require that the displacement p
satisfies

p-n=0 ondX, (9)
where n is the unit vector normal to the boundary. This means that the boundary points are allowed to move only tangen-

tially to the boundary, so that the boundary X maps to itself. This is consistent with Eq. (5). Using Eqgs. (7) and (8), the Jaco-
bian can be written as

oy (KXY () O Py _ Py 0Py
[X’y]7<ax dy oy ax>7<1+ax 1+ay ox oy’ (10)

We now formulate a variational principle for which p is optimal in some sense, with the constraint of equidistribution built-
in. We first consider a generic functional of the mapping

:/G(x,x@x@dxdy, (11)
X

where G is a scalar function, and x/, = ox'/ox. The functional (11) is minimized if the mapping x'(x) obeys the well-known
Euler-Lagrange equations.
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Next, we construct a function G consisting of a term proportional to the square of the grid displacement p plus a con-
straint enforced with a local Lagrange multiplier A(x,y) (which ensures that the cell volumes of the final grid satisfy a given
Jacobian J'/] equal to p(x,y)/p'(x',y'), i.e. equidistribution):

Y /Ayl /Ayl
G 0) = pley) G 2 [ 0. (G oy o) — Pk (12

In a time-stepping context, this leads to moving meshes with minimal grid velocities. This is of interest because excessive
grid velocity may be a significant source of error stemming from the grid advective term [38].
The resulting Euler-Lagrange equations corresponding to the minimization of integral (11) with G given by (12) are

;0P 1ol
= x)p+ A L= 10Y), (13)
/ «Aap/i PN
O =y)p+ 45y =10 x] (14)

(The boundary conditions ensure that the boundary terms due to the integrations by parts are zero.) Here, j =J'/J. We can
write | = [x',y'], and note the relation [f,g] = J(x,y)[f,gl,, where [-, ], denotes the Poisson bracket taking derivatives with
respect to X'. Using this and p(x,y)J(x,y) = p'(X (x,y),¥'(x,¥))] (X (x,¥),y'(x.y)), we deduce

, 0/
X—x=5 (15)
, 0/
y-y= oy (16)
where 1 = A(X(X')). We see that x =y ' (x') is a gradient with respect to X/,
X=X — Vyl=Vy(x?/2 - ) = VxV(X). (17)

The inverse X' — X exXists because the Jacobian is positive. The inverse of a gradient map is a gradient map, and is in fact given
by the Legendre transformation

X = VU(X), (18)
Ux)=x-x(x) - V(X'(x)). (19)

(Here and elsewhere, V equals Vy.) This fact, that the map y : X — X minimizing the L, norm of p = X’ — x [with weight p(x)]
is a gradient map, has been noted in the mathematics community [39,40], but we believe that the above is the most acces-
sible derivation. Using X - X' — x2/2 = x?/2 — p?/2, we find U = x2/2 — p?/2 + /. or

p—Vo (20)

with ¢ = 1 —p?/2.

Eq. (20), together with the constraint Eq. (6) and the boundary conditions p - n = 0 on oX, define the Monge-Kantorovich
optimal displacement approach. The equation holds for p of arbitrary magnitude, and has an important interpretation in a
time-stepping context. In this case, the movement of the grid points by y defines a grid velocity proportional to p, and the
conclusions above guarantee that iy moves the grid in an irrotational manner, i.e. it generates no vorticity.

By using Egs. (20) and (6)-(8), we obtain the Monge-Ampére equation for @

25 A2 25\ 2
g2, TOTD (6 @> _ Py (21)

ox2 gy? |\ oxdy p'x,Y)

Note that the solvability condition (5) ensures that the integral of the right hand side is zero. The second and third terms on
the left are the determinant of the Hessian matrix H; = o @/ox;0x;,1,j = 1,2. Eq. (21) is to be solved with the boundary con-
ditions of Section 4.3.1, or n- V& = 0, allowing one to obtain the new grid. Note that, unlike most other grid generation ap-
proaches, which require as many equations as dimensions, the Monge-Ampére equation is a single nonlinear equation for @
with no adjustable parameters.

2.3. Direct and inverse approaches

Eq. (21) has two nonlinear aspects, namely the Hessian and the dependence of p’ on X' = x+ V. If |p’ — 1] is large or
varies over a short length scale, the latter nonlinearity can lead to numerical difficulties. For cases in which |p — 1] is small
(p =1 is an important special case), it can be less difficult to solve the inverse problem. That is, we define x = X' + V@(x’),
leading to the inverse Monge-Ampeére equation

273 A2 27 2 Iyl Ay
V24 P0® (aqs) _PY) g (22)

2 y?  \oxay p(x.y)



9846 G.L. Delzanno et al./Journal of Computational Physics 227 (2008) 9841-9864

Again, condition (5) implies that the integral of the right hand side is zero. Let us specialize the discussion for now to the case
p(x,y) = 1. In this case, the Hessian is the only source of nonlinearity: The right-hand side does not contribute to the non-
linearity since x’ and y’ are now independent variables. The solution to Eq. (22) gives X as a function of X/, i.e. the map y~! of
Fig. 1. To complete the computation, this map must be inverted numerically to obtain the direct map .

In spite of the advantage of doing the inverse problem for p = 1 (or p close to unity), there are two major disadvantages.
First, since p(x) is (almost) uniform, it makes more sense to discretize the (direct) Monge-Ampére equation on a uniform
grid in x. For |p’ — 1| ~ 1, particularly if |Vy p’| is large, discretizing Eq. (22) on a uniform grid in X’ is seriously suboptimal,
since a very fine uniform mesh will be required to resolve sharp features present in p’. Second, the interpolations involved in
inverting y~' to obtain y involve some loss of accuracy and incur some computational cost. Nevertheless, in Section 5.2 we
use the inverse approach in order to compare with the deformation method [29], which in its original formulation was de-
signed to solve the inverse problem.

For both direct and inverse approaches, we need to discretize the Monge-Ampeére Eq. (21) in the logical (computational)
mesh. A very important case where this is of the essence is when the Monge-Ampére equation is solved in a time stepping
context, in which both p(x,y) and p’(x',y’) can be far from unity, although p/p’ is close to unity. Such a reformulation, in
which all derivatives are with respect to ¢;, can be readily performed as follows (where we will omit summation over re-
peated indices). For the direct approach, one notices that, in the logical space, V?® = }a,-(]gffajqﬁ), where 0; = 0/9¢; and J,
gl are the Jacobian and contravariant metric tensor of the map x(¢), respectively. For the latter, gi = (3&;/ax)(3¢;/axi). Also,
noticing that [0,®,9,®] = [, ][0, ®,d,®]; = J ' [0xP, 8, ], and that p(x,y) = J', we find that the logical representation of the
direct Monge-Ampére equation reads:

_r 1 (23)
Py pxy)
Here, the index Z indicates that the derivatives in the Poisson bracket are taken in the logical space. The components of V@
needed in the Poisson bracket can be expressed in terms of derivatives with respect to & by writing V& = 9;®V¢&;, and using
the fact that V¢ or 0&;/dx; is the inverse of J; = dx;/0¢;. Equivalently, introducting a third dimension z, we have
V¢ = 6}iax/aéj x &, where €3 is the Levi-Civita tensor. A similar argument for the inverse Monge-Ampére formulation
(22) in terms of the metric tensor and Jacobian of the map x/(¢) yields:
1 1

(' (&) 0y®) + [0x P, 0y ) = oy Py (24)

with the components of V, ® found in a similar fashion.

3i(g"0®) + [0, ®, 0, P)

3. Properties of Monge-Kantorovich optimization

We now proceed to establish certain important properties of the Monge-Kantorovich approach and the Monge-Ampére
equation, Eq. (21). These include the relation with grid distortion (grid smoothness) and ellipticity.

3.1. Connection to optimal grid distortion or smoothness

Our purpose in this section is to establish a connection between the approach based on Monge-Kantorovich optimization
and minimization of grid distortion. The latter can be quantified by the functional (11), with G given by:

ox' oy ox' oy
G X 10 = £ 52 ) i) [0 ) (G o o ) — o0, 25)

where u(x,y) is another local Lagrange multiplier, which again enforces equidistribution locally. The distortion measure
(811 + &5;) is the trace of the covariant metric tensor, defined as g = ¢ #, where ¢ is the Jacobi matrix of y, defined in
Eq. (1). In component notation, g; = /ﬁjkj, with repeated indices indicating summation. (That is, the Euclidean distance
dx dx; equals g;dx;dx;.) The mean distortion in Eq. (25) (whose integral is related to the so-called smoothness measure
of Ref. [11]) thus equals

N 2 N\ 2 N 2 N 2

sursa= () +(5) () < (B) @
Variational principles based on smoothness have previously been used in grid generation. Examples are in papers by Win-
slow [9,10], Brackbill and Saltzman [11] and, more recently, Huang [18]. However, smoothness has not been used in the con-
text of using a local Lagrange multiplier to enforce equidistribution exactly. In fact, in these references, a linear combination

of the smoothness integral and an equidistribution integral was minimized, so that neither was exactly minimized.
In order to understand the effect of the minimization of G in Eq. (25), it is of interest to consider the eigenvalues of the
metric tensor (4; and Z,), which are related to the elongation of a given computational cell in X’ relative to the corresponding

cell in x (/; = 4, implies that a square cell maps to a square cell). The trace of the metric tensor is equal to the sum of these
eigenvalues,
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811 +8xn =4+, (27)
while the local Jacobian constraint implies
2
p
iy = (—) . (28
142 0 )

The constrained minimization outlined above can be understood in terms of the local minimization of /; + 1, with the con-
straint 414, = C? (with Ca constant), which gives 4; = 2; = C > 0 (i.e. a square cell). Consequently, it follows that minimizing
the trace of the metric tensor constrained by the local cell volume results in the minimal grid cell distortion in X’ relative to x
which is compatible with the equidistribution constraint.

The Euler-Lagrange equations resulting from minimizing (11) with (25) read:

~30'

V- (pVX) + 1 2= [y, (29)
/ Aa ' / J

V-(pVY)+uJan//=f[up,X]- (30)

(Again the boundary terms obtained from integrating by parts are zero.) We refer to Egs. (6), (29) and (30), with suitable
boundary conditions, as the direct optimal distortion method. In Section 5, we will perform numerical calculations on the in-
verse optimal distortion method, which is obtained from Eqgs. (6), (29) and (30) by letting (x,X') — (X, X), (p,p') — (0', p),
and j — 1 /j.

Similar manipulations to the ones conducted for Egs. (15) and (16) lead to

1 0

vapw):a—if, (31)
1 ou

V- (pVy) =2, 32
5V ) =5 (32)

or p7'V . (pVX') = Vyx . In general X' is not a gradient map. However, for p =1+ 0(¢) and p' =1+ 0(¢), we obtain
X =X+ 0(¢) or p=0(¢), and it follows, to lowest order in &, that

Vp =V (33)

Eq. (33) is of higher order than that of the Monge-Kantorovich approach, Eq. (20), and therefore requires more boundary
conditions. We have found that specifying both the normal and tangential boundary conditions on p leads to a well-posed
problem.

For |¢] < 1, we can establish a relationship between Monge-Kantorovich optimization and minimum distortion optimi-
zation. Suppose p; = V@ is a solution to Eq. (21), with p, - n = 0 on 8X. Suppose further that we have a solution of Eq. (33)
with V?p, = Vu and with p, = p; on dX. In particular, this means that p,-n =0 on dX, but the tangential component
p, - t=0 is specified also on 0X (t being the unit vector tangential to the boundary). Defining p= V?®, we find
V3[p, — V@] = V?[p, — p;] = 0, with p, — p, equal to zero on the boundary. We conclude that p, = p; on X. Therefore,
the Monge-Kantorovich optimization solution p; = V& is also a solution to the optimal distortion method for |¢] < 1,
and Eq. (21) will produce optimally smooth grids. However, since the optimal distortion method requires p (and not only
p - n) to be specified on dX, there are other solutions to the optimal distortion problem, with varying degrees of mean dis-
tortion Eq. (26). For example, as we shall see in Section 5.1 for an example with ¢ ~ O(1), the Monge-Kantorovich solution
solution p, with p; -n =0 on aX (which would be a minimum distortion solution for ¢ small) has less distortion near the
boundary than the minimum distortion solution with p, = 0 on oX.

3.2. Ellipticity of the linearized PDE
We proceed to show that the linearized equidistribution PDE, Eq. (21), is elliptic. This is of relevance for the applicability

of multigrid methods in the solver algorithm (Section 4.2). As obtained in Section 2, the equidistribution nonlinear PDE
reads:

0P 0P p(X)
F@ =1+ V0 + |—,—| = . 34
=T vies [6X’@y] p(X) (G4)
Taking @ = &y + d@ and linearizing with respect to §®, there results the linear operator:
cE o2 00® 0dy 00y 00D
L[odi]fV&(DJr{H,W oy

Here, @, defines a mapping X; = X + V®,. Notice that the terms associated with the linearization of p’(x',y’) are disregarded
since they involve only first derivatives of @ and therefore do not affect the definition of ellipticity. Expanding the Poisson
brackets, we find:
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oy? 0x oy oxay’

2 2 2 2 2 2
6470)654)( a%)aa@ 2@, 825D (35)

L(5®) = <1 57 ) ae o~

which can be cast in the standard quadratic form Ad?6®/ox2 + CO?6®/0y? + 2Bd?6d/0xdy, with A = (1 4 3°dy/dy?),
C = (1+d*®y/0x%), and B = —* P, /0xdy. The linear PDE in Eq. (35) is elliptic if and only if AC — B> > 0 [34]. However, it is
straightforward to show that AC — B* = F[d,] = p(X)/p’(X}), which is positive by definition and so the ellipticity condition
is satisfied. In most cases of interest, @ will correspond to a previous time step (in dynamic computations) or to a previous
Newton iterate.

4. Numerical implementation

In this section, we discuss the details of the numerical implementation of the Monge-Kantorovich approach, Eq. (21).
Here and in Section 5, for simplicity, we will consider X = = and the identity mapping between the logical space = and
the initial grid in physical space: x = & This implies J = 1.

4.1. Discretization of the equidistribution PDE, Eq. (21)

For the discretization of Eq. (21), we place @ at the cell centers of the uniform logical grid and use ghost cells to enforce
the boundary conditions. The Laplacian is discretized according to the usual 5-point stencil:
Diigj— 2@+ Di_q; N Dij1 — 2D+ Dijq

Ax? Ay? ’

Vi) = (36)
where i and j label the x and y position of a generic cell center and Ax, Ay are the width and height of each cell in the uniform
initial grid (logical grid), respectively. The Hessian term in Eq. (21) (which can also be expressed as [0,®, 0, P]) contains cross
derivatives, and therefore requires a 9-point stencil for its discretization. For this, we compose two discrete first-order deriv-
atives as follows. First, we define first-order derivatives at vertices (i +1/2,j+1/2) as

oP ~ Piv1j+ Pivijir — Pij — Piji (37)
X i1 /2441/2 2Ax 7

0P ~ Dij1 + Dirj1 — Pij — ¢i+l.j. (38)
Y liv1/2j+1/2 27y

These are introduced in similarly defined first-order derivatives at cell centers (i,j) (found by replacing i —i—1/2 and
j —J—1/2 in the expressions above), to obtain the 9-point stencil discretization sought.

4.2. Newton-Krylov solver with multigrid preconditioning

In order to solve the nonlinear equation of the Monge-Kantorovich approach, Eq. (21), we use a nonlinear inexact New-
ton-Krylov solver. That is, we solve the nonlinear system (21), the discretized form of which is G(®) = 0 (where ® is the
vector containing the values of @(x,y) at cell centers). This is performed iteratively by solving successive linear systems
of the form:

oG
—| 0B = —G(P, 39
s, O (®y) (39)
with ®,,; = @ + Bod,. The parameter f (< 1) damps the Newton update to extend the domain of convergence of Newton’s
method convergence in the face of very nonlinear systems. Here, 8 is determined using the Armijo rule [41].
Nonlinear convergence is determined by:

1G(@i)ll; < €0+ €[|G(®o)l, = €, (40)

where || - ||, is the #,-norm (euclidean norm), €, = v'N x 10~"® (with N the total number of degrees of freedom, N = n,n,) is
an absolute tolerance to avoid trying to converge to below roundoff, €, is the Newton relative convergence tolerance (set to
107* in this work), and G(d) is the initial residual. For our purposes, we use the identity x/(x) = X, or ® = 0, as the initial
guess.

Such linear systems are solved iteratively with Krylov methods, which only require matrix-vector products to proceed.
Because the linear system matrix is a Jacobian matrix, such matrix-vector products can be implemented Jacobian-free using
the Gateaux derivative:

oG G(D + €v) — G(Dy)

v =lim , (41)

op|, 0 €

where in practice a small but finite € is employed [41]. Thus, the evaluation of the Jacobian-vector product only requires the
function evaluation G(®y + ev), and there is no need to form or store the Jacobian matrix.
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An inexact Newton method [42] is used to adjust the convergence tolerance of the Krylov method at every Newton iter-
ation according to the size of the current Newton residual, as follows:

k0@ + G(D) |, < 1 /IG(P) ][ (42)

where 7, is the inexact Newton parameter and J, = 2|, is the Jacobian matrix. Thus, the convergence tolerance of the Krylov
method is loose when the Newton state vector ® is far from the nonlinear solution, but tightens as ®, approaches the solu-
tion. Hence, the linear solver works the hardest when the Newton state vector is closest to the nonlinear root. Superlinear
convergence rates of the inexact Newton method are possible if the sequence of 7, is chosen properly [41]. Here, we employ
the same prescription as in [43]:

o IG@], \*
Te =Y <\|G<q>k4>uz> 7

N = min(n,,,,, max (g, yni_,)),

M = min |:'/Imax’ max (’157 VL>:| )
1G(®x) I,

with o« = 1.5, y = 0.9, and #5,,,,, = 0.9. The convergence tolerance ¢, is defined in Eq. (40). In this prescription, the first step
ensures superlinear convergence (for o > 1), the second avoids volatile decreases in #,, and the last avoids oversolving in
the last Newton iteration. We also use a quadratic line-search backtracking algorithm [41] for added robustness of the non-
linear solver.

A further advantage of Krylov methods is that they can be preconditioned by considering the alternate systems
JiP ' Pd®, = —Gy (right preconditioning) or P, 'J,6®, = —P, 'G, (left preconditioning). Such a preconditioning step can be
straightforwardly and efficiently implemented in the Krylov algorithm as two consecutive matrix-vector products, and
has the potential of substantially improving the convergence properties of the Krylov iteration if P,' ~ J,!. Here, we use mul-
tigrid (MG) right preconditioning, which has been shown in many applications [20,44-49,43] to deliver optimal, scalable
convergence rates. In fact, for some of the examples considered in Section 5, we have observed that the MG-preconditioned
approach results in a two order of magnitude improvement in the iteration count and an order of magnitude speedup in the
CPU time vs. the unpreconditioned one. While multigrid methods as solvers are very sensitive to the details of the smoother
and the restriction and prolongation operators [50], as preconditioners they have shown remarkable robustness even with
low-order interpolation operators [44-48,51]. Here, we use a V(4,4) multigrid cycle with damped Jacobi as smoother (with
damping parameter w = 0.7 unless otherwise noted), agglomeration for restriction, and bilinear prolongation.

The ellipticity property of the linearized equidistribution PDE Eq. (21) guarantees the stability of the Jacobi smoother. In-
deed, it can be shown that, for the linearized version of Eq. (21), namely Eq. (35), the spectral radius r of the Jacobi iteration
matrix is |r| < 1 when:

12 + V2P| > 2|0% Py /0x Dy, (43)

where @, corresponds to the previous Newton iterate on which the linearization is conducted. Alternatively, we can write
Eq. (43) as

|A+C| > 2|B| (44)
with A, B, C defined in Section 3.2. Squaring Eq. (44) and subtracting 4AC results in
(A—C)* > 4(B* — AC). (45)

The ellipticity property of the linearized equidistribution PDE (Section 3.2) implies that the right hand side of the equation
above is always negative, thereby ensuring that the inequality is always satisfied. This proves that the spectral radius of the
Jacobi iteration matrix will always be smaller than unity, and therefore that a damped Jacobi iteration can be an effective
multigrid smoother.

4.3. Numerical implementation issues

There are several important numerical details that have the potential of derailing the viability of a given solution algo-
rithm of the Monge-Kantorovich equation. In the context of our finite-difference implementation, these are: (1) the numer-
ical treatment of the boundary conditions n - V& = 0, and (2) the numerical enforcement of the solvability condition Eq. (5).
We proceed to discuss these in some detail.

4.3.1. Boundary conditions

Our finite-difference implementation places finite-volume faces at physical boundaries. The unknown potential @ is
placed at cell centers. The boundary conditions n- V@ = 0 are imposed via ghost cells. Ghost cells across boundary faces
are filled trivially by extrapolation using this homogeneous Neumann boundary condition. In practice, this simply implies
that, taking the x = 1 boundary face, @, .1 = ®,,;, and similarly for other faces. Here, n, and n, are the number of cells in
each direction and the boundary face x = 1 corresponds to i = n, + 1/2. Similarly, the face x = 0 has i = 1/2. However, since
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the discretization of the Monge-Kantorovich equation requires a 9-point stencil, corner ghost cells need to be filled as well.
To fill these, we have found it crucial to enforce that the value in the ghost corner be equal to the corner value within the
domain (e.g. for the northwest corner, we have @, ,15,+1 = Py, ). It is easy to show that, with this choice and the previous
recipe for face ghost cells, the following consistency condition is enforced at the corners of the domain:

(pnx+1.ny+1 = ®nx+],ny = ®nx.ny+1 = ¢nx‘ny'

In essence, this enforces the corners to remain fixed.

4.3.2. Solvability condition

The solvability condition Eq. (5) states that the physical volume mapped by x’ and x be the same. The implications of this
normalization requirement are different depending on whether one is using a direct or an inverse Monge-Kantorovich for-
mulation (Section 2.3), assuming that p(x,y) equals unity. In an inverse formulation, where x < X’ in Eq. (5), the right-hand
side of Eq. (22), p'(x',y") — 1, depends only on the independent variables x',y’. In this case, the solvability condition is auto-
matically satisfied by the density normalization condition, Eq. (4), and nothing changes during the nonlinear iterations. In a
direct formulation, the right-hand side of Eq. (21), 1/p'(x’,y') — 1, depends on the new variables, i.e. on &, so that the solv-
ability condition is a constraint on the mapping X'(X), i.e. on @. In order to take this solvability contraint into account and to
improve convergence of the solver for the direct case, we have normalized the right-hand side of Eq. (21) by letting
1/p'(x,y)—1—C/p'(¥,y') — 1 and finding C so that Eq. (5) is satisfied for each nonlinear function call. Although conver-
gence may be achieved without this renormalization, we have found that this renormalization improves the convergence
and robustness of the solver appreciably. By performing this normalization at every nonlinear call, the solver corrects for
small changes in the normalization constant due to numerical errors (small changes in the total volume) which occur as
the map evolves. While performing the normalization procedure at every function evaluation increases the cost per call,
the corresponding reduction in linear and nonlinear iterations easily offsets this increase.

4.4. Equidistribution diagnostic

In order to check the enforcement of the equidistribution constraint, one must define the discretized volumes of the de-
formed cells. Again, we assume p(x,y) =J(x,y) = 1, i.e. the old physical grid and the logical grid are identical.

Since the shape of the new cell is deformed, we numerically compute the Jacobian det[Vx'] using the four-point approx-
imation [52-54]. For a given cell in the new grid coordinate system, let us denote the four vertices of the cell by (x},y}),
i=1,2,3,4 counterclock-wise from the lower left corner. See Fig. 2. We compute the derivatives at each cell center by

AX (%X X~ %))

Ax 2Ax (46)

i’; _ (X - X12X;<3 —X) 7 (47)

i})f{’ _ s - yﬁzzxya -Y4) 7 (48)

% A *JHZZ;% *YZ). (49)
Then we compute the numerical Jacobian at the center of the cell as

Jnum=%%f%%-, (50)

(X,y+Ay) (X+AX,y+Ay)

Vo)

(xy) X (x+Axy)

Fig. 2. Sketch of the mapping transformation for a single cell. The spatial discretization adopted in Eqs. (46)-(49) and the definition of the numerical
Jacobian, Eq. (50), are such that J,,AxAy equals the area of the polygon connecting the four vertices of the deformed cell.
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and J,,,AxAy is the cell volume in 2D. Notice that, with this choice of the discretization, the area of the deformed cell cor-
responds to the natural geometrical area of the polygon connecting the four vertices of the cell.

4.5. Implementation algorithm

Here we summarize the implementation algorithm for the nonlinear solution of the Monge-Kantorovich approach, Eq.
(21). For notation, see Section 4.2.

) Start with a guess ® = ®,, the values of @ at cell centers.

) Evaluate the nonlinear residual, G(®y).

) Check convergence [Eq. (40)].

) If not converged, compute the Newton update 5®; by solving J, 0@, = —G(®y).
) Compute the new Newton state ®;,; = ®; + f5®;. Go back to (2).

)

(
(
(
(
(
(6) If converged, compute the vertices of the new grid X' = x + V& by using Eqgs. (37) and (38).

1
2
3
4
5
6

In order to solve iteratively for the Newton update using Krylov methods, the evaluation of the residual G(®) is essential.
We report its algorithm below:

(1) Given @, fill the ghost cells as discussed in Section 4.3.1.
(2) Compute the vertices of the new grid X' = x + V@& by using Eqs. (37) and (38).
(3) Compute the cell centers of the new grid as

o Xizgaae T Xiapie T Xz T X240 51
Xij = 4 . (51)

(4) Compute p'(x’) at cell centers. Apply renormalization of Section 4.3.2.
(5) Obtain G(®), the discretized form of V>® + [% ,%] - ’ffg,% + 1, at cell centers (the discretization of the first two terms
is discussed in Section 4.1).

5. Results

In this Section, we will apply the Monge-Kantorovich approach to several challenging tests. First, we will solve the
inverse problem, Eq. (22), to compare the Monge-Kantorovich approach to the optimal distortion method (inverse
approach), in order to test the connection between the two approaches established in Section 3.1 for an example where
e~ 0(1).

Second, we will compare the performance of the Monge-Kantorovich approach against the deformation method of Liao
and Anderson [29]. (Again we will use the inverse formulation for the Monge-Kantorovich approach, in order to compare
with the deformation method, which in its original formulation could deal only with the inverse problem, i.e. the Jacobian
specified as J(x,y) [29].) This method (reviewed in the Appendix) finds cell-area equidistribution by requiring the grid to be
generated by means of a specified flow. The deformation procedure is designed specifically to take advantage of certain ODE
theorems to prove that, once a consistent flow is chosen, the mapping is one-to-one. See the Appendix for more details. The
method requires the solution of a second order system of time-dependent ODEs [the initial value problem defined by Egs.
(A.4), (A.5)] with a given velocity field [Egs. (A.6) and (A.7)]. To solve numerically these equations, we use a second-order
Runge-Kutta method. This is a very simple - and not very accurate — method, but we will use small time steps so that typ-
ically grid errors dominate most of the computations.

Finally, we will solve the direct Monge-Ampére equation, Eq. (21), for three very challenging examples.

All the methods have been coded in Fortran 90 and results, including accuracy and performance, are obtained with a
2.4 GHz Intel Xeon processor.

In order to check the accuracy of the various methods, we will compare the numerical Jacobian in the new coordinate
system to the prescribed Jacobian, namely, we test if J' = ], at the cell centers (recall that X = & so that J = 1). For this pur-
pose, we define the total error of the scheme as:

Error = /5" Yum —J FiA%AY. (52)

ij

We will also assess the quality of the adapted grid by measuring the global displacement of the grid points [according to Eq.
(12)]

Ipll, = /> (plpI*);;A%Ay, (53)

ij
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as well as the global distortion of the cells [according to Eq. (25)]

811 + &2l = Z(P‘gn + 82);;AXAY. (54)

ij
5.1. Comparison of the Monge—Kantorovich approach with the optimal distortion method

First, we qualitatively compare the Monge-Kantorovich approach against the optimal distortion method, without the
assumption ¢ < 1 (Section 3.1). In both cases, we solve the inverse problem. For the Monge-Kantorovich approach, we solve
Eq. (22) to obtain the mapping x(x’) and then invert it numerically to obtain x'(x). For the inverse optimal distortion method,
we solve Egs. (6), (29) and (30) with (x,x') — (X,X), (p,p") — (p’, p) and ] — l/f and again invert the mapping x(x') numer-
ically. We consider p(x,y) = 1 and the following functional form of the density function on the new grid

Example 1
c
2+ cos[8my/(x — 0.5 + (y — 0.5)?]

p/(xl7y/) — s (55)

where C is the normalization factor such that Eq. (4) is satisfied. Note that ¢ ~ |p’ — 1] is of order unity (see Fig. 3).

The results for the Monge-Kantorovich approach are presented in Table 1. By looking at the equidistribution error as a
function of N = n, x n, (with n, = n,), one notices that the error scales as Ax?> ~ n;2, consistent with the truncation error
of the numerical scheme. Also, note that the method converges with practically the same number of linear and nonlinear
iterations for all the grids considered. This is consistent with the observation (third column) that the scaling of the CPU time
(ignoring the small cost of inversion) with the total number of grid cells N is linear (optimal).

Fig. 4 shows the grid generated by the Monge-Kantorovich approach (solid line) and an optimal distortion method with
p = 0 on 0X (dashed line) for a 32 x 32 grid. First of all, note that the grids are finer in the regions in Fig. 3 where p’ is larger.
It is also clear that the two grids are practically indistinguishable in the interior region, but noticeably different near the four
corners. These differences can be attributed to the p = 0 boundary condition (fixed boundary points). For the Monge-Kant-
orovich method, only the normal component of p is zero. These boundary conditions require the adapted grid to curve
noticeably near the boundary, much more so than the Monge-Kantorovich grid. (We have also checked numerically that,

p(x"y)
1 -
116
0.8
1.4
0.6
N 112
>
0.4 ;
0.2 0.8
0 0.6

0 02 04, 06 08 1

Fig. 3. p'(x,y’) for Example 1. Note that ¢ ~ |p’ — 1] is of order unity, and the ratio pj,, /P, is 3.

Table 1

Example 1, inverse formulation

Number of cells Error CPU time (s) IplI5™ g1 + &2 14 Newton iterations GMRES iterations
16 x 16 9.64 x 1072 0.1 0.0173 1.449 3 3

32x32 228 x 1072 0.4 0.0173 1.466 4 4

64 x 64 578 x 102 1.3 0.0173 1.470 4 4

128 x 128 1.46 x 1073 49 0.0174 1.470 4 4

256 x 256 3.67x1074 19 0.0174 1.471 4 4

Grid convergence study for the Monge-Kantorovich approach, reporting the equidistribution error, the CPU time (ignoring the cost of inversion), the grid
quality measures HpH’Z"'K and (g, +g22\|’1\’"(, and the number of linear and nonlinear iterations as functions of N = ny x ny(ny = ny).
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T

Fig. 4. Example 1, inverse formulation. Comparison of the new grid configuration for p’ as in Eq. (55) and Fig. (3), obtained by the Monge-Kantorovich
approach (solid line) and the optimal distortion method (dashed line). The grid has n, = n, = 32.

when p, and p, on dX obtained from the Monge-Kantorovich approach are used as boundary conditions for the optimal dis-
tortion method, the grids generated with the two methods are essentially identical.) We also notice that the newly generated
grids are symmetric about X' = 0.5, about ¥’ = 0.5, and about the 45° axes, as required by the symmetry properties held by
the density p’ and the boundary. Overall, we can conclude that the two approaches produce very similar grids despite the
fact that this example has ¢ ~ O(1). This is consistent with the results of Section 3.1, and suggests that even for ¢ ~ O(1),
the Monge-Kantorovich approach very nearly minimizes the grid distortion.

5.2. Comparison of the Monge-Kantorovich approach with the deformation method

Second, we compare the Monge-Kantorovich approach with the deformation method of Liao and Anderson [29] in terms
of accuracy [Eq. (52)], quality of the grid defined by Egs. (53) and (54), and computational time needed to achieve the solu-
tion. Again we consider the inverse problem, Eq. (22). To the best of our knowledge, the deformation method is the only
other method in the literature that is designed specifically to satisfy the equidistribution constraint. The method is reviewed
in the Appendix, to which we refer the interested reader for some details on our numerical implementation.

In order to cast the results in the correct perspective, it is useful to identify the sources of error associated with the imple-
mentation of the deformation method. These are:

o the spatial discretization of the integrals (A.6) and (A.7), for which we use a second-order numerical scheme;

o the temporal discretization of the ODE system (A.4), for which we use the second-order Runge-Kutta method;

o the spatial interpolation from the reference grid to the time-dependent physical grid (see the Appendix), for which we use
cubic splines. This source of error is generally negligible since it is of higher order than the spatial discretization of Eqgs.
(A.6) and (A.7).

Since we are using an inverse formulation, which obtains !, there is an additional source of interpolation error in obtaining
¥, i.e. X'(X). We ignore this source of error because it is in common with the inverse Monge-Kantorovich approach.

We investigate these sources of error by performing numerical experiments on Example 1 for differing number of cells in
the computational domain and by changing the temporal time step At. Results are presented in Tables 2 and 3, where we
report the error between the numerical and analytical Jacobian [as defined in Eq. (52)], some measures of the quality of
the grid, and the computational time needed to converge to the desired grid. By inspection of Table 2 (At = 0.1), one notices

Table 2

Example 1, inverse formulation

Number of cells Error CPU time (s) Il — 1 (%) lentenly 1 ()
Iz lg11+&22 17

16 x 16 1.16 x 107! 0.02 +24 +1

32 x32 3.54 x 1072 0.1 +28 2

64 x 64 9.89 x 102 0.4 +30 +3

128 x 128 2.84x1073 1.5 +30 +3

256 x 256 118 x 1073 6 +30 +3

Grid convergence study for the deformation method with At = 0.1. The grid quality measures ||p||, and ||g;; + g2,||; are expressed relative to the corre-
sponding quantities obtained with the Monge-Kantorovich approach shown in Table 1.
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Table 3

Example 1, inverse formulation

Number of cells Error CPU time (s) Pl 1 (% lgntgnly 1 (%
Ipll5™ 1% g1 +822 T 1%

16 x 16 1.16 x 107! 0.2 +24 +1

32 %32 3.53 x 1072 0.9 +28 +2

64 x 64 9.64 x 1073 34 +30 +3

128 x 128 246 x 1073 13.6 +30 +3

256 x 256 621 x 1074 55 +30 +3

Grid convergence study for the deformation method with At = 0.01. The grid quality measures ||p||, and ||g;; + g5,||; are expressed in terms of variation
with respect to the corresponding quantities obtained with the Monge-Kantorovich approach in Table 1.

that the error decreases a little more slowly than n;? when the number of grid points is doubled in each direction from the
16 x 16 grid to the 128 x 128 grid. However, from the 128 x 128 to the 256 x 256 grid the error decreases only by a factor of
2.4 and remains roughly constant for more refined grids (not shown). This indicates that the spatial discretization error is the
dominant source of error for n, < 128, but for the more refined grids the temporal discretization error is important. At the
same time, by looking at Table 3 (obtained with At = 0.01), it is clear that the error decreases roughly as n;? for all the cases
considered. Therefore we can conclude that At = 0.01 is small enough to make the temporal discretization error negligible
for the grids considered in this Table. We mention at this point that we did not find any equidistribution errors or perfor-
mance comparisons reported in the literature for the deformation method. By comparing Table 1 with Tables 2 and 3, we
see that the Monge-Kantorovich approach and the deformation method are comparable (for equal grid size) in terms of equi-
distribution error. Another observation from Tables 2 and 3 is that the computational time (ignoring the cost of inversion)
needed to obtain the desired grid scales linearly (optimally) with the number of grid points. Notice also that, for the
256 x 256 grid, the deformation method with At = 0.01 is roughly three times slower than the multigrid preconditioned
Monge-Kantorovich approach (Table 1).

For comparison, in Fig. 5 we have superimposed the 32 x 32 grids obtained by the Monge-Kantorovich approach (solid
line) and the deformation method (dashed line). Clearly, the differences in the grid are much larger than the corresponding
differences in the equidistribution error, which says that the two methods do not converge to the same grid. By looking at the
fourth and fifth columns of Table 3 for the deformation method (expressed in terms of variation with respect to the values
obtained with the Monge-Kantorovich approach), we see that the Monge-Kantorovich approach produces better quality
grids. For instance, for the 128 x 128 grid, the norm of the displacement of the grid points is about 30% more while the over-
all distortion of the grid is about 3% more for the deformation method (which is significant given the smoothness of the tar-
get grid density; below we consider a much more challenging case which will show far more distortion with the deformation
method). These differences are evident in Fig. 5. It is not surprising that the deformation method does not produce optimal
grids, since it is not formulated in terms of a variational principle.

Third, we compare the Monge-Kantorovich approach (inverse method) and the deformation method (with At = 0.01) for
the following very challenging example

Example 2
PX.y)=C|1+ > (56)
Y =
1 + [10r cos(0 — 20r2)]
1 — ‘ ‘ T
R \ 2 7 il
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Fig. 5. Example 1, inverse formulation. Comparison of the new grid configuration obtained by the Monge-Kantorovich approach (solid line) and the
deformation method (dashed line, At = 0.01) using 32 x 32 cells.
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with

r=y/(x 077+ (y - 05,

o (Y05
0 = tan <x’ — 0.7). (57)

This example corresponds to a spiral centered at (0.7,0.5) with very tight arms (see Fig. 6). In this case, the ratio between the
maximum and minimum values of p’(x',y’) is about 9. Table 4 shows the grid convergence study for the Monge-Kantorovich
approach. Notice that the equidistribution error for coarse grids is quite large, and does no